วันพฤหัสบดีที่ 11 กันยายน พ.ศ. 2551

เคเบิลใต้น้ำ (Submarine cables)

เคเบิลใต้น้ำ (Submarine cables)
เป็นสื่ออีกอย่างหนึ่งที่มีการนำมาใช้ในระบบสื่อสารโทรคมนาคมระหว่างประเทศตั้งแต่อดีตจนถึงปัจจุบันเพื่อใช้ในการรับ-ส่งสัญญาณทุกชนิดได้อย่างมีประสิทธิภาพ และด้วยเทคโนโลยีที่มีการพัฒนาเป็นลำดับๆมา จากยุคของเคเบิลใต้น้ำที่ใช้เคเบิลแบบแกนร่วม ( Coaxial cable) เรื่อยมาจนถึงเคเบิลแบบใยแก้วนำแสง (Optical fiber cable) เคเบิลใต้น้ำใยแก้วนำแสงมีการวางใช้งานแพร่หลายในแทบทุกส่วนของโลก เนื่องจากสามารถพัฒนาให้ทันสมัย และเหมาะสมกับสภาวการณ์ทั้งในปัจจุบันและอนาคต
ระบบเคเบิลใต้น้ำใยแก้ว
นำแสงแบบดิจิทัลเส้นแรกเป็นของโครงการ TAT-8 ซึ่งเปิดให้บริการในปี 2531 ระหว่างสหราชอาณาจักร ฝรั่งเศส และสหรัฐอเมริกา โดยเป็นเคเบิลใต้น้ำชนิดใหม่ที่มีเส้นใยแก้วนำแสงบรรจุอยู่ถึง 3 คู่ ตามติดมาด้วยเคเบิลใยแก้วนำแสงทรานส-แปซิฟิกเส้นแรกของโครงการ TPC-3 ในปี 2532 และ HAW-4 ซึ่งให้บริการระหว่าง ญี่ปุ่น กวม และสหรัฐอเมริกาเมื่อเปรียบเทียบกับเคเบิลแบบสายคู่ตีเกลียว (twisted-pair) และแบบโคแอ๊คเชียล (coaxial) แล้ว เคเบิลแบบใยแก้วนำแสงมีขนาดบางกว่ามาก ทว่าสามารถรองรับจำนวนช่องสัญญาณได้มากกว่า นอกจากนี้เคเบิลใยแก้วนำแสงยังปราศจากปัญหาในเรื่องของเทอร์มอล น๊อยส์ (thermal noise) และ ครอสทอล์ค (crosstalk) และยังไม่มีการรั่วไหลของการแพร่กระจายคลื่นแม่เหล็กไฟฟ้า รวมทั้งใช้สัญญาณแสงซึ่งไม่สามารถดักฟังหรือแท๊พได้อีกด้วยปัจจุบันเคเบิลโทรศัพท์ใต้น้ำสามารถวางได้รวดเร็วกว่าในอดีต อันเป็นผลจากความก้าวหน้าอย่างมากของเทคโนโลยีใยแก้วนำแสง ทำให้มีการวางระบบเคเบิลใต้น้ำใยแก้วนำแสงเป็นจำนวนมากในภูมิภาคเอเซีย-แปซิฟิกนานกว่า 10 ปีมาแล้ว เกินจำนวนของระบบแอนะล็อกที่ได้เคยวางไว้แล้วกว่า 40 ปี และมีปริมาณทราฟฟิกโทรศัพท์ระหว่างประเทศเพิ่มขึ้นถึง 10 เท่าตัวจากความก้าวหน้าของเคเบิลใยแก้วนำแสง ซึ่งปรากฏว่าในจำนวนนี้กว่าครึ่งหนึ่งเป็นของภูมิภาคเอเซีย-แปซิฟิกการขยายตัวและความพยายามเปลี่ยนโครงข่ายในภูมิภาคเอเซีย-แปซิฟิกให้เป็นระบบดิจิทัลอย่างรวดเร็ว ควบคู่กับความต้องการในการวางเคเบิลใต้น้ำที่ค่อนข้างสูงในภูมิภาคนี้ซึ่งมี แหลม หมู่เกาะ และเกาะใหญ่น้อย เป็นจำนวนมาก เช่นเดียวกับการเติบโตทางเศรษฐกิจอย่างสูง ทำให้ตลาดมีการขยายตัว อย่างรวดเร็ว
ข้อดีของเคเบิลใต้น้ำใยแก้วนำแสงระบบเคเบิลใต้น้ำ
มีความได้เปรียบทางเทคโนโลยีหลายประการที่เหนือกว่าระบบอื่นๆ1. หากเป็นระบบดาวเทียม ที่มีระยะทางในการสื่อสัญญาณไป-กลับมากกว่า 72,000 กิโลเมตรแล้ว การสื่อสารด้วยระบบดาวเทียมจะมีการหน่วงเวลา (propagation delay) ราว 0.5 วินาที นอกจากนี้สภาพภูมิอากาศยังมีผลต่อประสิทธิภาพและการทำงานด้วย เช่น ฝน สามารถทำให้เกิดการลดทอนสัญญาณได้ด้วย แต่ถ้าเป็นระบบเคเบิลใต้น้ำใยแก้วนำแสงแล้ว จะมีการหน่วงเวลาค่อนข้างน้อย และไม่อ่อนไหวต่อสภาพภูมิอากาศที่เลวร้ายแต่อย่างใดสำหรับระบบดาวเทียมนั้นมีข้อดีคือ ส่งข้อมูลข่าวสารได้เป็นจำนวนมากไปยังที่ต่างๆบนพื้นโลก การรับสัญญาณทำได้ง่าย แต่ก็ขาดความปลอดภัยหากไม่มีการเข้ารหัสป้องกัน2. ด้วยความก้าวหน้าทางเทคโนโลยีหลายประการ ทำให้สามารถลดค่าใช้จ่ายในการก่อสร้างและบำรุงรักษาระบบเคเบิลใยแก้วนำแสงได้มาก ถึงแม้ว่าระบบดาวเทียมมีวิธีการสื่อสารได้กับหลายๆจุด (multipoint)ซึ่งค่อนข้างประหยัดก็ตาม แต่ระบบเคเบิลก็ยังได้เปรียบทั้งในด้านค่าใช้จ่ายระหว่างจุดต่อจุด (point-to-point) และยังสามารถรับ-ส่งสัญญาณได้เป็นจำนวนมากอีกด้วยนอกจากนี้ในเรื่องของเทคโนโลยี Branching ซึ่งเป็นจุดเด่นพิเศษของระบบเคเบิลแบบใยแก้วนำแสงที่ไม่มีในระบบเคเบิลแบบแกนร่วม ทำให้เคเบิลใต้น้ำสามารถใช้คู่สายร่วมกันได้ และแยกออกเป็นเส้นทางสื่อ-สัญญาณ (transmission path) ต่างๆได้โดยใช้ Branching unit3. จากการใช้ DS-3 ทำให้ช่วยร่นเวลาในการนำ unactivated capacity ในระบบเคเบิลใต้น้ำมาใช้ เป็นผลให้สามารถพัฒนาบริการในระบบดิจิทัลใหม่ๆได้ เช่น การสื่อสารข้อมูลความเร็วสูง และการประชุมทางไกลด้วยภาพและเสียง (video-audio conference) ซึ่งต้องการระบบที่มีความจุช่องสัญญาณ (capacity) มากๆและการสื่อสารที่มีคุณภาพสูง
ลักษณะของเคเบิลใต้น้ำระบบเคเบิลใต้น้ำ
เป็นระบบที่ใช้ในการรับ-ส่งสัญญาณโทรคมนาคม ผ่านทางสายเคเบิลที่วางทอดตัวอยู่ใต้ทะเลหรือมหาสมุทรเป็นระยะทางไกล เชื่อมโยงระหว่างสถานีเคเบิลใต้น้ำ 2 สถานีซึ่งอาจจะเป็นระหว่างจุดต่อจุดหรือประเทศต่อประเทศ และจากการที่สายเคเบิลมีระยะทางที่ค่อนข้างไกลมากนี้เอง จำเป็นต้องมีการชดเชยการสูญเสียกำลังของสัญญาณไปตามความยาวของสายเคเบิลโดยใช้อุปกรณ์ที่เรียกว่า อุปกรณ์ทวนสัญญาณ (repeater) ช่วยขยายช่องสัญญาณเป็นช่วงๆ ทำให้คุณภาพสัญญาณไม่เปลี่ยนแปลงแม้ภูมิอากาศแปรปรวน รวมทั้งมีความล่าช้าของสัญญาณ (time delay)น้อยมาก เคเบิลใต้น้ำโดยทั่วไปออกแบบให้มีอายุใช้งานอย่างน้อย 25 ปีขึ้นไปอุปกรณ์ทวนสัญญาณนี้จะใส่เป็นระยะๆตลอดความยาวของเคเบิลใต้น้ำ ถ้าเป็นระบบเคเบิลใต้น้ำแบบแกนร่วม แต่ละตัวห่างกันประมาณ 15 กิโลเมตร(เนื่องจากมีอัตราการสูญเสียของระดับสัญญาณสูง) ส่วนระบบเคเบิลใต้น้ำแบบใยแก้วนำแสงนั้น แต่ละตัวห่างกันประมาณ 100 กิโลเมตร(หรืออาจมากกว่านั้น)ระบบเคเบิลใต้น้ำ เป็นระบบสื่อสารโทรคมนาคมที่ทันสมัยและเป็นที่นิยมใช้กันอย่างแพร่หลายทั่วโลก โดยเฉพาะอย่างยิ่งการสื่อสารโทรคมนาคมในระบบโครงข่ายติดต่อระหว่างประเทศในการวางเคเบิลใต้น้ำที่ผ่านมาในอดีตจะเป็นเคเบิลแบบแกนร่วม ซึ่งมีความจุหรือความสามารถในการให้บริการด้านสื่อสารโทรคมนาคมไม่เพียงพอในปัจจุบันและอนาคต จึงมีการพัฒนาเป็นเคเบิลแบบใยแก้วนำแสง และนำมาใช้เป็นเคเบิลใต้น้ำที่มีประสิทธิภาพรองรับบริการได้มากขึ้นหลายเท่าตัว ด้วยคุณสมบัติของเคเบิลใยแก้วนำแสง ทำให้สามารถสื่อสารในรูปแบบดิจิทัล รับส่งสัญญาณได้ด้วยแถบความถี่ที่กว้างกว่า รับส่งข้อมูลข่าวสารด้วยอัตราที่เร็วกว่า และที่สำคัญคือรองรับการสื่อสารโทรคมนาคมใหม่ๆได้ทุกรูปแบบ
การพัฒนาระบบเคเบิลใต้น้ำ
ในยุคแรก ใช้เคเบิลใยแก้วนำแสงขนาดความยาวคลื่น (wavelength) 1.4 um ที่มีอัตราความเร็ว 295.6 Mbit/s (ตาม CEPT-4 139.264 Mbit/s) อัตรารับส่งสัญญาณ 280 Mbit/s ทำให้ได้ช่องสัญญาณ 3,780 ช่อง ( 64 Kbit/s ต่อช่องสัญญาณ)ระบบในยุคที่ 2 ใช้ขนาดความยาวคลื่น 1.55 um ด้วยอัตราความเร็ว 560 Mbit/s ทำให้ได้วงจรเสียงพูด (voice channel) เพิ่มขึ้นถึง 40,000 วงจรต่อคู่ นั่นก็หมายความว่า ต้องการใช้อุปกรณ์ทวนสัญญาณหรือรีพีทเตอร์ จำนวนน้อย เคเบิลใต้น้ำแต่ละเส้นจะมีเคเบิลใยแก้วนำแสงใช้งานเพียง 2 คู่ โดยอีกคู่ใช้เป็นคู่สายสำรอง ซึ่งสามารถรองรับทราฟฟิกเท่ากับวงจรโทรทัศน์ถึงกว่า 30,000 วงจรระบบเคเบิลใต้น้ำใยแก้วนำแสงนั้น โดยทั่วไปมักออกแบบให้มีอายุใช้งานราว 25 ปี ทั้งนี้ต้องมีการทดสอบความไว้วางใจได้เพิ่มเติม ด้วยอุปกรณ์รีพีทเตอร์ เช่นเดียวกับการใช้เทคนิคของ redundancy ด้วยนอกเหนือจากการใช้เรือออกสำรวจ ซ่อมแซมราว 2-3 ครั้งตลอดอายุใช้งานของมันระบบเคเบิลใต้น้ำใยแก้วนำแสงยุคที่ 3 มีการนำ ออพติคัล ไฟเบอร์ แอมพลิฟายร์ (optical fibre amplifiers) หรือออพแอมป์ เข้ามาเกี่ยวข้องด้วย ทั้งนี้ในระบบดังกล่าว สัญญาณจะถูก repeat โดยตรงโดยไม่มีการแปลงเป็นสัญญาณไฟฟ้าในรีพีทเตอร์แต่อย่างใด จึงทำให้การสร้างรีพีทเตอร์ทำได้ง่ายโดยใช้เพียงอุปกรณ์อิเล็กทรอนิกส์ความเร็วต่ำและไม่มีปัญหาในเรื่อง bit rate จากการมอดูเลท นอกจากนี้ยังสามารถใช้ได้กับเอสดีเอช (SDH - Synchronous Digital Hierarchy) และเพิ่มความเร็วได้สูงถึง 5 Gbit/s ทำให้รองรับวงจรเสียงได้ถึง 300,000 วงจรต่อเคเบิลใยแก้วนำแสงหนึ่งคู่นอกจากนี้ ได้มีการพัฒนาเทคโนโลยีที่ก้าวหน้าขึ้นไปอีก โดยความร่วมมือกันระหว่าง KDD (ญี่ปุ่น) กับ AT&T (สหรัฐอเมริกา) ในการพัฒนาระบบเคเบิลใต้น้ำใยแก้วนำแสงที่สามารถส่งสัญญาณได้ที่ความเร็ว 100 Gbit/s หรือ 10 เท่าของความเร็วของระบบที่ทั้งสองบริษัทกำลังสร้างอยู่ในปัจจุบัน โดยคาดว่าจะใช้ระบบที่มีความเร็วถึง 100 Gbit/s นั้นได้ในราว พ.ศ. 2543 (ค.ศ. 2000) ซึ่งจะรองรับการสื่อสารโทรศัพท์ได้ถึง 1.2 ล้านช่อง นอกเหนือจากการส่งสัญญาณโทรทัศน์อีก 2,000 ช่อง

เครือข่ายความเร็วสูง SDH (Synchronous Digital Hierarchy)

เครือข่ายความเร็วสูง SDH (Synchronous Digital Hierarchy)
SDH เป็นคำศัพท์ที่กำลังได้รับการกล่าวถึงอย่างมากทางหน้าหนังสือพิมพ์ หลายคนคงอยากรู้ถึงเทคโนโลยีเครือข่าย SDH ว่ามีลักษณะอย่างไร มีความเป็นมาหรือแนวโน้มที่น่าสนใจอะไรบ้าง
SDH (Synchronous Digital Hierarchy) เป็นเทคโนโลยีมาตรฐาน สำหรับการส่งผ่านข้อมูลแบบ synchronous บนตัวกลางใยแก้ว และเทียบได้มาตรฐานสากลของ Synchronous Optical Network แต่เทคโนโลยีทั้งสองให้ความเร็วมากกว่า และถูกกว่าเครือข่ายติดต่อภายใน เมื่อเทียบกับอุปกรณ์ PDH (Plesiochronous Digital Hierarchy)
SDH ย่อมาจาก Synchronous Digital Heirarchy SDH เป็นคำศัพท์ที่มีความหมายถึงการวางลำดับการสื่อสารแบบซิงโครนัสในตัวกลางความเร็วสูง ซึ่งโดยปกติใช้สายใยแก้วเป็นตัวนำสัญญาณ การสื่อสารภายในเป็นแบบซิงโครนัส คือส่งเป็นเฟรม และมีการซิงค์บอกตำแหน่ง เริ่มต้นเฟรมเพื่อให้อุปกรณ์รับตรวจสอบสัญญาณข้อมูลได้ถูกต้อง มีการรวมเฟรมเป็นช่องสัญญาณที่แถบกว้างความเร็วสูงขึ้น และจัดรวมกันเป็นลำดับ เพื่อใช้ช่องสื่อสารบนเส้นใยแก้วนำแสง
ความเป็นมาของ SDH มีมายาวนานแล้ว เริ่มจากการจัดการโครงข่ายสายโทรศัพท์ ซึ่งสัญญาณโทรศัพท์ได้เปลี่ยนเป็นดิจิตอล โดยช่องสัญญาณเสียงหนึ่งช่องใช้สัญญาณแถบกว้าง 64 กิโลบิต แต่ในอดีตการจัดมาตรฐานลำดับชั้นของเครือข่ายสัญญาณเสียงยังแตกต่างกัน เช่นในสหรัฐอเมริกา มีการจัดกลุ่มสัญญาณเสียง 24 ช่อง เป็น 1.54 เมกะบิต หรือที่เรารู้จักกันในนาม T1 และระดับต่อไปเป็น 63.1, 447.3 เมกะบิต แต่ทางกลุ่มยุโรปใช้ 64 กิโลบิตต่อหนึ่งสัญญาณเสียง และจัดกลุ่มต่อไปเป็น 32 ช่องเสียงคือ 2.048 เมกะบิต ที่รู้จักกันในนาม E1 และจัดกลุ่มใหญ่ขึ้นเป็น 8.44, 34.36 เมกะบิต
การวางมาตรฐานใหม่สำหรับเครือข่ายความเร็วสูงจะต้องรองรับการใช้งานต่าง ๆ ทั้งเครือข่ายสัญญาณโทรศัพท์ และสัญญาณมัลติมีเดียอื่น ๆ เช่น สัญญาณโทรทัศน์ ข้อมูลบนอินเทอร์เน็ต และที่จะเกิดขึ้นในอนาคตอีกได้ คณะกรรมการจัดการมาตรฐาน SDH จึงรวมแนวทางต่าง ๆ ในลักษณะให้ยอมรับกันได้ โดยที่สหรัฐอเมริกา เรียกว่า SONET ดังนั้นจึงอาจรวมเรียกว่า SDH/SONET การเน้น SDH/SONET ให้เป็นกลางที่ทำให้เครือข่ายประยุกต์ใช้งานต่าง ๆ วิ่งลงตัวได้จึงเป็นเรื่องสำคัญ
เนื่องจากโครงข่ายของ SDH/SONET ใช้เส้นใยแก้วนำแสงเป็นหลัก โดยวางแถบกว้าง พื้นฐานระดับต่ำสุดไว้ที่ 51.84 เมกะบิต โดยที่ภายในแถบกว้างนี้จะเป็นเฟรมข้อมูลที่สามารถนำช่องสัญญาณเสียงโทรศัพท์ หรือการประยุกต์อื่นใดเข้าไปรวมได้ และยังรวมระดับช่องสัญญาณต่ำสุด 51.84 เมกะบิตนี้ให้สูงขึ้น เช่นถ้าเพิ่มเป็นสามเท่าของ 51.84 ก็จะได้ 155.52 ซึ่งเป็นแถบกว้างของเครือข่าย ATM
โมเดลของ SDH แบ่งออกเป็นสี่ชั้น เพื่อให้มีการออกแบบและประยุกต์เชื่อมต่อได้ตาม มาตรฐานหลัก
ชั้นแรก เรียกว่าโฟโตนิก เป็นชั้นทางฟิสิคัลที่เกี่ยวกับการเชื่อมเส้นใยแก้วนำแสง และอุปกรณ์ประกอบทางด้านแสง
ชั้นที่สอง เป็นชั้นของการแปลงสัญญาณแสง เป็นสัญญาณไฟฟ้า หรือในทางกลับกัน เมื่อแปลงแล้วจะส่งสัญญาณไฟฟ้าเชื่อมกับอุปกรณ์สื่อสารอื่น ๆ ชั้นนี้ยังรวมถึงการจัดรูปแบบเฟรมข้อมูล ซึ่งเป็นเฟรมมาตรฐาน แต่ละเฟรมมีลักษณะชัดเจนที่ให้อุปกรณ์ตัวรับและตัวส่งสามารถซิงโครไนซ์เวลากันได้ เราจึงเรียกระบบนี้ว่า ซิงโครนัส
ชั้นที่สาม เป็นชั้นที่ว่าด้วยการรวมและการแยกสัญญาณ ซึ่งได้แก่วิธีการมัลติเพล็กซ์ และดีมัลติเพล็กซ์ เพราะข้อมูลที่เป็นเฟรมนั้นจะนำเข้ามารวมกัน หรือต้องแยกออกจากกัน การกระทำต้องมีระบบซิงโครไนซ์ระหว่างกันด้วย
ชั้นที่สี่ เป็นชั้นเชื่อมโยงขนส่งข้อมูลระหว่างปลายทางด้านหนึ่งไปยังปลายทางอีกด้านหนึ่ง เพื่อทำให้เกิดวงจรการสื่อสารที่สมบูรณ์ ในการสื่อสารระหว่างอุปกรณ์หนึ่งไปยังอีกอุปกรณ์หนึ่งจึงเสมือนเชื่อมโยงถึงกันในระดับนี้
เพื่อให้การรับส่งระหว่างปลายทางด้านหนึ่งไปยังอีกปลายทางด้านหนึ่งมีลักษณะสื่อสารไปกลับได้สมบูรณ์ การรับส่งจึงมีการกำหนดแอดเดรสของเฟรมเพื่อให้การรับส่งเป็นไปอย่างถูกต้อง กำหนดโมดูลการรับส่งแบบซิงโครนัส ที่เรียกว่า STM - Synchronous Transmission Module โดย เฟรมของ STM พื้นฐาน มีขนาด 2430 ไบต์ โดยส่วนกำหนดหัวเฟรม 81 ไบต์ ขนาดแถบกว้างของการรับส่งตามรูปแบบ STM จึงเริ่มจาก 155.52 เมกะบิตต่อวินาที ไปเป็น 622.08 และ 2488.32 เมกะบิตต่อวินาที
จะเห็นว่า STM ระดับแรกมีความเร็ว 155.52 เมกะบิตต่อวินาที ซึ่งเป็น 3 เท่าของแถบกว้างพื้นฐานของ SDH ที่ 51.84 เมกะบิตต่อวินาที STM จึงเป็นส่วนหนึ่งที่อยู่ภายใน SDH ด้วย ในการส่งผ่านแบบดิจิตอล "synchronous" หมายถึง บิตจากการเรียก 1 ครั้งได้รับการนำภายใน 1 frame ของการส่ง Plesiochronous หมายถึง "เกือบจะ synchronous" หรือ การเรียก 1 ครั้งต้องดึงจาก frame การส่งมากกว่า 1 frame SDH ใช้ตาม Synchronous Transport Modules (STM) และอัตรา คือ STM-1 (155 megabits ต่อวินาที), STM-4 (622 Mbps), STM-16 (2.5 gigabits ต่อวินาที), และ STM-64 (10 Gbps) เมื่อพิจารณาให้ดีจะเห็นว่า ผู้ออกแบบมาตรฐาน SDH ต้องการให้เป็นทางด่วนข้อมูลข่าวสาร ที่จะรองรับระบบเครือข่ายโทรศัพท์ที่มีอัตราการส่งสัญญาณกันเป็น T1, T3, หรือ E1, E3 ขณะเดียวกันก็รองรับเครือข่าย ATM (Asynchronous Transfer Mode) ที่ใช้ความเร็วตามมาตรฐาน STM ดังที่กล่าวแล้ว โดยที่ SDH สามารถเป็นเส้นทางให้กับเครือข่าย ATM ได้หลาย ๆ ช่องของ ATM
ในขณะเดียวกันSDH จึงเสมือนถนนของข้อมูลที่ใช้เส้นใยแก้วนำแสงเพื่อรองรับแถบกว้างของสัญญาณสูง ขณะเดียวกันก็ใช้งานโดยการรวมสัญญาณข้อมูลต่าง ๆ เข้ามาร่วมใช้ทางวิ่งเดียวกันได้SDH จึงเป็นโครงสร้างพื้นฐาน เสมือนหนึ่งเป็นถนนเชื่อมโยงที่ต่าง ๆ เข้าด้วยกัน ที่สำคัญคือ ถนนเหล่านี้จะเป็นทางด่วนที่รองรับการประยุกต์ใช้งานในอนาคต SDH หรือทางด่วนข้อมูล จะเกิดได้หรือไม่ คงต้องคอยดูกันต่อไป
SDH เป็นเทคโนโลยีในการ Multiplex สัญญาณรูปแบบใหม่(ไม่ค่อยใหม่แล้ว)ที่เพิ่มความคล่องตัวในการ multiplex/demultiplex สัญญาณให้ทำได้ง่ายขึ้น ต่างจากระบบเดิมคือ PDH ซึ่งต้องทำการ multiplex เป็น step หลายๆขั้นตอนจากความเร็วต่ำไปสู่ความเร็วสูง กล่าวคือ ถ้าต้องการ multiplex สัญญาณ 2 Mbps ไปเป็นสัญญาณ 140 Mbps ก็ต้อง multiplex จาก 2->8->34->140 สามขั้นตอน หรือในทางกลับกัน ถ้าเราได้รับสัญญาณ 140 Mbps มาและต้องการถอดเอาสัญญาณ 2 Mbps ออกมา เราจะถอดตรงๆไม่ได้ต้อง demultiplex 3 ขั้นตอนเช่นกันในระบบ SDH ปัญหาลักษระนี้จะไม่เกิดขึ้น เนื่องจากเราสามารถ multiplex สัญญาณ 2 Mbps ไปเป็น 155 Mbps ได้โดยตรง ในทางกลับกันเมื่อเราได้รับสัญญาณ 155 Mbps มาก็สามารถถอดเอาสัญญาณ 2 Mbps ออกมาได้ทันทีเช่นกัน
ทำให้การทำงานง่ายขึ้น นอกจากนี้ SDH ยังรองรับสัญญาณได้หลายระดับพร้อมกัน กล่าวคือเราสามารถ multiplex สัญญาณ 1.5,2,6,8,34,45,140 ไปเป็น 155 Mbps ได้โดยตรง นอกจากนี้ SDH ถูกออกแบบมาเพื่อใช้กับการสื่อสารทางแสงทำให้สามารถส่งสัญญาณที่ความเร็วสูงมากๆเช่น STM-1 (155Mbps), STM-4(622Mbps), STM-16, STM-64 เป็นต้น ไปบนสาย fiber optic คู่เดียว เป็นการสะดวกและลดต้นทุนในส่วนของสาย fiber optic ด้วย

เส้นใยแก้วนำแสง (fiber optic)

เส้นใยแก้วนำแสง (fiber optic) คืออะไร
เส้นใยแก้วนำแสงหรือไฟเบอร์ออปติก เป็นตัวกลางของสัญญาณแสงชนิดหนึ่ง ที่ทำมาจากแก้วซึ่งมีความบริสุทธิ์สูงมาก เส้นใยแก้วนำแสงมีลักษณะเป็นเส้นยาวขนาดเล็ก มีขนาดประมาณเส้นผมของมนุษย์เรา เส้นใยแก้วนำแสงที่ดีต้องสามารถนำสัญญาณแสงจากจุดหนึ่งไปยังอีกจุดหนึ่งได้ โดยมีการสูญเสียของสัญญาณแสงน้อยมากเส้นใยแก้วนำแสงสามารถแบ่งตามความสามารถในการนำแสงออกได้เป็น 2 ชนิด คือ เส้นใยแก้วนำแสงชนิดโหมดเดี่ยว (Singlemode Optical Fibers, SM) และชนิดหลายโหมด (Multimode Optical Fibers, MM)ในปัจจุบันได้มีการพัฒนาเส้นใยแก้วนำแสง ที่ทำมาจากพลาสติกเพื่องานบางอย่างที่ไม่คำนึงถึงการสูญเสียสัญญาณมากนัก เช่น การสื่อสารในระยะทางสั้น ๆ ไม่กี่เมตรFiber Optic Cable หลักการทั่วไปของการสื่อสารในสายไฟเบอร์ออปติกคือการเปลี่ยนสัญญาณ (ข้อมูล) ไฟฟ้าให้เป็นคลื่นแสงก่อน จากนั้นจึงส่งออกไปเป็นพัลส์ของแสงผ่านสายไฟเบอร์ออปติกสายไฟเบอร์ออปติกทำจากแก้วหรือพลาสติกสามารถส่งลำแสง ผ่านสายได้ทีละหลาย ๆ ลำแสงด้วยมุมที่ต่างกัน ลำแสงที่ส่งออกไปเป็นพัลส์นั้นจะสะท้อนกลับไปมาที่ผิวของสายชั้นในจนถึงปลายทาง จากสัญญาณข้อมูลซึ่งอาจจะเป็นสัญญาณอนาล็อกหรือดิจิตอล จะผ่านอุปกรณ์ที่ทำหน้าที่มอดูเลตสัญญาณเสียก่อน จากนั้นจะส่งสัญญาณมอดูเลตผ่านตัวไดโอดซึ่งมี 2 ชนิดคือ LED ไดโอด (light Emitting Diode) และเลเซอร์ไดโอด หรือ ILD ไดโอด (Injection Leser Diode) ไดโอดจะมีหน้าที่เปลี่ยนสัญญาณมอดูเลตให้เป็นลำแสงเลเซอร์ซึ่งเป็นคลื่นแสงในย่านที่มองเห็นได้ หรือเป็นลำแสงในย่านอินฟราเรดซึ่งไม่สามารถมองเห็นได้ ความถี่ย่านอินฟราเรดที่ใช้จะอยู่ในช่วง 1014-1015 เฮิรตซ์ ลำแสงจะถูกส่งออกไปตามสายไฟเบอร์ออปติก เมื่อถึงปลายทางก็จะมีตัวโฟโต้ไดโอด (Photo Diode) ที่ทำหน้าที่รับลำแสงที่ถูกส่งมาเพื่อเปลี่ยนสัญญาณแสงให้กลับไปเป็นสัญญาณมอดูเลตตามเดิม จากนั้นก็จะส่งสัญญาณผ่านเข้าอุปกรณ์ดีมอดูเลต เพื่อทำการดีมอดูเลตสัญญาณมอดูเลตให้เหลือแต่สัญญาณข้อมูลที่ต้องการ สายไฟเบอร์ออปติกสามารถมีแบนด์วิดท์ (BW) ได้กว้างถึง 3 จิกะเฮิรตซ์ และมีอัตราเร็วในการส่งข้อมูลได้ถึง 1 จิกะบิตต่อวินาที ภายในระยะทาง 100 กม. โดยไม่ต้องการเครื่องทบทวนสัญญาณเลย สายไฟเบอร์ออปติกสามารถมีช่องทางสื่อสารได้มากถึง 20,000-60,000 ช่องทาง สำหรับการส่งข้อมูลในระยะทางไกล ๆ ไม่เกิน 10 กม. จะสามารถมีช่องทางได้มากถึง 100,000 ช่องทางทีเดียว ความผิดพลาดในการส่งข้อมูลผ่านสายไฟเบอร์ออปติกนั้นมีน้อยมาก คือประมาณ 1 ใน 10 ล้านบิตต่อการส่ง 1,000 ครั้ง เท่านั้น ทั้งยังป้องกันการรบกวนจากสัญญาณภายนอกได้โดยสิ้นเชิง

ข้อจำกัด
1. ราคา ทั้งสายไฟเบอร์ออปติกและอุปกรณ์ประกอบการทั้งหลายมีราคาสูงกว่าการส่งสัญญาณผ่านสายเคเบิลธรรมดามาก
2. อุปกรณ์พิเศษสำหรับการเปลี่ยนสัญญาณไฟฟ้าให้เป็นคลื่นแสง และจากคลื่นแสงกลับมาเป็นสัญญาณไฟฟ้า และเครื่องทวนสัญญาณ อุปกรณ์ดังกล่าวเป็นเทคโนโลยีสมัยใหม่ซึ่งมีความซับซ้อน และราคาแพงมาก
3. เทคนิคในการติดตั้งระบบ เนื่องจากสายไฟเบอร์ออปติกมีความแข็งแต่เปราะจึงยากต่อการเดินสายไฟตามที่ต่าง ๆ ได้ตามที่ต้องการ อีกทั้งการเชื่อมต่อระหว่างสายก็ทำได้ยากมาก เพราะต้องระวังไม่ได้เกิดการหักเห
ในปัจุบันมีการใช้งาน Internet กันอย่างกว้างขวางจากการใช้งานที่จำกัดอยู่ในที่ทำงานได้ขยายความต้องการใช้งานในที่บ้านมากขึ้น มีการติดตั้งวงจรเพื่อใช้งานจากที่บ้านมากขึ้น นอกจากนี้ในอนาคตรูปแบบการใช้งานยังขยายเข้าสู่ Multimedia มากขึ้น เช่น IP-TV,Telepresence,Video on demand,IP Phone. ในอดีตการใช้งานเมื่อต้องการเชื่อมต่อจะใช้ผ่าน Modem และคู่สายทองแดงของระบบโทรศัพท์ ที่ได้ความเร็วเพียง 56Kbps ต่อมามีการพัฒนาทางเทคโนโลยีนำไปสู่การใช้งานที่เร็วยิ่งขึ้นได้แก่ digital subscriber line (DSL) เช่น ADSL และ cable modem Optics to the home (FTTH) คือเทคโนโลยีที่นำข้อมูล ข่าวสารต่างๆขนาดมหาศาลมาถึงบ้านผู้ใช้บริการ ด้วยเคเบิลใยแก้วนำแสงที่มีขนาดเล็กและเบาแต่สามารถส่งข้อมูลขนาดใหญ่ได้อย่างรวดเร็วด้วยคุณภาพที่สูง แนวคิดด้าน Fiber Optics to the home (FTTH) มีการกล่าวถึงกันมานานแล้ว มีหลายบริษัทที่มีความพยายามนำแนวคิดนี้นำมาให้บริการแก่กลุ่มลูกค้ารายเล็กๆโดยเฉพาะกลุ่มลูกค้าตามบ้านพักอาศัยที่เป็นโฮมยูสเซอร์ทั่วไปโดยเฉพาะในประเทศสหรัฐอเมริกาและญี่ปุ่น ที่มีการวางระบบเครือข่าย Fiber Optic เพื่อให้บริการในรูปแบบ FTTH เช่นบริษัท BellSouth มีการวางสายFiber เข้าไปที่เขต Dunwoody ใน Atlanta ประมาณ 400 หลัง.Futureway บริษัทที่ให้บริการด้านโทรคมนาคมของแคนนาดาเริ่มมีการสร้างระบบเชื่อมต่อ Fiber เข้าสู่ตามที่พักอาศัยแล้วในเมือง Toronto
ในด้านผู้ผลิตอุปกรณ์(Supplier)ในด้านนี้อย่าง Optical Solution มีอัตราการเติบโตที่ดีมียอดขายอุปกรณ์ด้าน Fiber เพิ่มมากขึ้น สิ่งต่างๆเหล่านี้เป็นเสมือนแนวโน้มและทิศทางที่ดีของการใช้งานด้าน Fiber Optics to the home แต่เมื่อมองดูความต้องการการใช้งานในตลาดจากผู้บริโภคปรากฏว่ามีการขยายตัวน้อยมาก